Therapeutic potential of capillary morphogenesis gene 2 extracellular vWA domain in tumour‑related angiogenesis.
نویسندگان
چکیده
Capillary morphogenesis gene 2 (CMG2) is a receptor of anthrax toxin and plays an important role in angiogenesis. It has been shown to be involved in the cell adhesion and motility of various cell types, including epithelia and endothelia. The present study aimed to examine the therapeutic potential of targeting CMG2 to prevent tumour‑related new vasculature. The full-length coding sequence of the human CMG2 gene and different fragments of the CMG2 vWA domain were amplified and constructed into a mammalian expression plasmid vector. The effect of CMG2 and its vWA domain on endothelial cells and angiogenesis was assessed using relevant in vitro, ex vivo and in vivo models. The overexpression of CMG2 enhanced the adhesion of endothelial cells to extracellular matrix, but was negatively associated with cell migration. Overexpression of CMG2 and the vWA domain fragments inhibited the tubule formation and migration of endothelial cells. Small peptides based on the amino acid sequence of the CMG2 vWA domain fragments potently inhibited in vitro tubule formation and ex vivo angiogenesis. One of the polypeptides, LG20, showed an inhibitory effect on in vivo tumour growth of cancer cells which were co-inoculated with the vascular endothelial cells. CMG2 is a potential target for treating tumour‑related angiogenesis. The polypeptides based on the CMG2 vWA domain can potently inhibit in vitro and ex vivo angiogenesis, which may contribute to the inhibitory effect on in vivo tumour growth. Further investigations are required to shed light on the machinery and may provide a novel therapeutic approach for inhibition of angiogenesis in cancer management.
منابع مشابه
Crystallization and preliminary X-ray analysis of the vWA domain of human anthrax toxin receptor 1.
The Gram-positive spore-forming bacterium Bacillus anthracis causes anthrax by secreting anthrax toxin, which consists of protective antigen (PA), lethal factor and oedema factor. Binding of PA to receptors triggers the multi-step process of anthrax toxin entry into target cells. Two distinct cellular receptors, ANTXR1 (also known as tumour endothelial marker 8; TEM8) and ANTXR2 (also known as ...
متن کاملHuman capillary morphogenesis protein 2 functions as an anthrax toxin receptor.
Bacillus anthracis secretes two bipartite toxins thought to be involved in anthrax pathogenesis and resulting death of the host. The current model for intoxication is that protective antigen (PA) toxin subunits bind a single group of cell-surface anthrax toxin receptors (ATRs), encoded by the tumor endothelial marker 8 (TEM8) gene. The ATR/TEM8-PA interaction is mediated by the receptor's extra...
متن کاملCrystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor.
Anthrax toxin is released from Bacillus anthracis as three monomeric proteins, which assemble into toxic complexes at the surface of receptor-bearing host cells. One of the proteins, protective antigen (PA), binds to receptors and orchestrates the delivery of the other two (the lethal and edema factors) into the cytosol. PA has been shown to bind to two cellular receptors: anthrax toxin recepto...
متن کاملProtein Expression and Purification
1046-5928/$ see front matter 2009 Elsevier Inc. A doi:10.1016/j.pep.2009.09.016 * Corresponding author. Fax: +1 215 503 6795. E-mail address: [email protected] (M 1 Two authors contributed equally. 2 Abbreviations used: PA, protective antigen; ATR/C capillary morphogenesis protein 2; VWA, the von Wil fragment of human immunoglobulin. Mass vaccination against anthrax with existing vac...
متن کاملMutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis.
Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are autosomal recessive conditions characterized by multiple subcutaneous skin nodules, gingival hypertrophy, joint contractures, and hyaline deposition. We previously mapped the gene for JHF to chromosome 4q21. We now report the identification of 15 different mutations in the gene encoding capillary morphogenesis prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of oncology
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2014